Distribution of effective synaptic currents in cat triceps surae motoneurons. VI. Contralateral pyramidal tract.

نویسندگان

  • M D Binder
  • F R Robinson
  • R K Powers
چکیده

We measured the effective synaptic currents (IN) produced by stimulating the contralateral pyramidal tract (PT) in triceps surae motoneurons of the cat. This is an oligosynaptic pathway in the cat that generates both excitation and inhibition in hindlimb motoneurons. We also determined the effect of the PT synaptic input on the discharge rate of some of the motoneurons by inducing repetitive firing with long, injected current pulses during which the PT stimulation was repeated. At resting potential, all but one triceps motoneuron received a net depolarizing effective synaptic current from the PT stimulation. The effective synaptic currents (IN) were much larger in putative type F motoneurons than in putative type S motoneurons [+4.6 +/- 2.9 (SD) nA for type F vs. 0.9 +/- 2.4 nA for putative type S]. When the values of IN at the threshold for repetitive firing were estimated, the distribution was markedly altered. More than 60% of the putative type S motoneurons received a net hyperpolarizing effective synaptic current from the pyramidal tract stimulation as did 33% of the putative type F motoneurons. This distribution pattern is very similar to that observed previously for the effective synaptic currents produced by stimulating the contralateral red nucleus. As would be expected from the wide range of IN values at threshold (-4.8 to +8.7 nA), the PT stimulation produced dramatically different effects on the discharge of different triceps motoneurons. The discharge rates of those motoneurons that received depolarizing effective synaptic currents at threshold were accelerated by PT stimulation (+1 to +8 imp/s), whereas the discharge rates of cells that received hyperpolarizing currents were retarded by the PT input (-2 to -7 imp/s). The change in firing rates produced by the PT stimulation was generally approximated by the product of the effective synaptic currents and the slopes of the motoneurons' frequency-current relations. Our findings indicate that the contralateral pyramidal tract may provide a powerful source of synaptic drive to some high-threshold motoneurons while concurrently inhibiting low-threshold cells. Thus this input system, like that from the contralateral red nucleus, can potentially alter the gain of the input-output function of the motoneuron pool as well as disrupt the normal hierarchy of recruitment thresholds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Summation of effective synaptic currents and firing rate modulation in cat spinal motoneurons.

The aim of this study was to examine how cat spinal motoneurons integrate the synaptic currents generated by the concurrent activation of large groups of presynaptic neurons. We obtained intracellular recordings from cat triceps surae motoneurons and measured the effects of repetitive activity in different sets of presynaptic neurons produced by electrical stimulation of descending fibers or pe...

متن کامل

Simulation of dendritic CaV1.3 channels in cat lumbar motoneurons: spatial distribution.

We used computer simulations to study the dendritic spatial distribution of low voltage-activated L-type calcium (Ca(V)1.3 type) channels, which mediate hysteretic persistent inward current (PIC) in spinal motoneurons. This study was prompted by the growing experimental evidence of the functional interactions between synaptic inputs and active conductances over the motoneuron dendritic tree. A ...

متن کامل

Title: Simulation of Dendritic Cav1.3 Channels in Cat Lumbar Motoneurons: Spatial

We used computer simulations to study the dendritic spatial distribution of low voltageactivated L-type calcium (Cav1.3 type) channels, which mediate hysteretic persistent inward current (PIC) in spinal motoneurons. This study was prompted by the growing experimental evidence of the functional interactions between synaptic inputs and active conductances over the motoneuron dendritic tree. A com...

متن کامل

How to enhance ipsilateral actions of pyramidal tract neurons.

We have shown previously that ipsilateral pyramidal tract (PT) neurons facilitate the actions of reticulospinal neurons on feline motoneurons (Edgley et al., 2004), which indicates that they might assist the recovery of motor functions after injuries of contralateral corticospinal neurons. Nevertheless, stimulation of ipsilateral PT fibers alone only rarely evoked any synaptic actions in motone...

متن کامل

Properties of propriospinal neurons in the C3-C4 segments mediating disynaptic pyramidal excitation to forelimb motoneurons in the macaque monkey.

Candidate propriospinal neurons (PNs) that mediate disynaptic pyramidal excitation to forelimb motoneurons were studied in the C3-C4 segments in anesthetized macaque monkeys (n = 10). A total of 177 neurons were recorded (145 extracellularly, 48 intracellularly, and 16 both) in laminae VI-VII. Among these, 86 neurons (73 extracellularly, 14 intracellularly and 1 both) were antidromically activa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 80 1  شماره 

صفحات  -

تاریخ انتشار 1998